Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(19): 13125-13142, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36111399

RESUMO

Tuberculosis and parasitic infections continue to impose a significant threat to global public health and economic growth. There is an urgent need to develop new treatments to combat these diseases. Here, we report the in vitro and in vivo profiles of a new bicyclic nitroimidazole subclass, namely, nitroimidazopyrazinones, against mycobacteria and Trypanosoma cruzi. Derivatives with monocyclic side chains were selective against Mycobacterium tuberculosis and were able to reduce the bacterial load when dosed orally in mice. We demonstrated that deazaflavin-dependent nitroreductase (Ddn) could act effectively on nitroimidazopyrazinones, indicating the potential of Ddn as an activating enzyme for these new compounds in M. tuberculosis. Oral administration of compounds with extended biaryl side chains (73 and 74) was effective in suppressing infection in an acute T. cruzi-infected murine model. These findings demonstrate that active nitroimidazopyrazinones have potential to be developed as orally available clinical candidates against both tuberculosis and Chagas disease.


Assuntos
Doença de Chagas , Mycobacterium tuberculosis , Nitroimidazóis , Trypanosoma cruzi , Tuberculose , Animais , Doença de Chagas/tratamento farmacológico , Modelos Animais de Doenças , Camundongos , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Nitrorredutases , Tuberculose/tratamento farmacológico
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161270

RESUMO

Triaza-coumarin (TA-C) is a Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor with an IC50 (half maximal inhibitory concentration) of ∼1 µM against the enzyme. Despite this moderate target inhibition, TA-C shows exquisite antimycobacterial activity (MIC50, concentration inhibiting growth by 50% = 10 to 20 nM). Here, we investigated the mechanism underlying this potency disconnect. To confirm that TA-C targets DHFR and investigate its unusual potency pattern, we focused on resistance mechanisms. In Mtb, resistance to DHFR inhibitors is frequently associated with mutations in thymidylate synthase thyA, which sensitizes Mtb to DHFR inhibition, rather than in DHFR itself. We observed thyA mutations, consistent with TA-C interfering with the folate pathway. A second resistance mechanism involved biosynthesis of the redox coenzyme F420 Thus, we hypothesized that TA-C may be metabolized by Mtb F420-dependent oxidoreductases (FDORs). By chemically blocking the putative site of FDOR-mediated reduction in TA-C, we reproduced the F420-dependent resistance phenotype, suggesting that F420H2-dependent reduction is required for TA-C to exert its potent antibacterial activity. Indeed, chemically synthesized TA-C-Acid, the putative product of TA-C reduction, displayed a 100-fold lower IC50 against DHFR. Screening seven recombinant Mtb FDORs revealed that at least two of these enzymes reduce TA-C. This redundancy in activation explains why no mutations in the activating enzymes were identified in the resistance screen. Analysis of the reaction products confirmed that FDORs reduce TA-C at the predicted site, yielding TA-C-Acid. This work demonstrates that intrabacterial metabolism converts TA-C, a moderately active "prodrug," into a 100-fold-more-potent DHFR inhibitor, thus explaining the disconnect between enzymatic and whole-cell activity.


Assuntos
Antagonistas do Ácido Fólico/farmacologia , Complexos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/enzimologia , Oxirredutases/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/química , Genes Bacterianos , Mutação com Perda de Função/genética , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Oxirredução , Tetra-Hidrofolato Desidrogenase/genética
3.
PLoS Pathog ; 16(2): e1008287, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32032366

RESUMO

Our inability to predict which mutations could result in antibiotic resistance has made it difficult to rapidly identify the emergence of resistance, identify pre-existing resistant populations, and manage our use of antibiotics to effectively treat patients and prevent or slow the spread of resistance. Here we investigated the potential for resistance against the new antitubercular nitroimidazole prodrugs pretomanid and delamanid to emerge in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). Deazaflavin-dependent nitroreductase (Ddn) is the only identified enzyme within M. tuberculosis that activates these prodrugs, via an F420H2-dependent reaction. We show that the native menaquinone-reductase activity of Ddn is essential for emergence from hypoxia, which suggests that for resistance to spread and pose a threat to human health, the native activity of Ddn must be at least partially retained. We tested 75 unique mutations, including all known sequence polymorphisms identified among ~15,000 sequenced M. tuberculosis genomes. Several mutations abolished pretomanid and delamanid activation in vitro, without causing complete loss of the native activity. We confirmed that a transmissible M. tuberculosis isolate from the hypervirulent Beijing family already possesses one such mutation and is resistant to pretomanid, before being exposed to the drug. Notably, delamanid was still effective against this strain, which is consistent with structural analysis that indicates delamanid and pretomanid bind to Ddn differently. We suggest that the mutations identified in this work be monitored for informed use of delamanid and pretomanid treatment and to slow the emergence of resistance.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias , Farmacorresistência Bacteriana , Mutação , Mycobacterium tuberculosis , Nitroimidazóis/farmacologia , Nitrorredutases , Oxazóis/farmacologia , Engenharia de Proteínas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Nitrorredutases/genética , Nitrorredutases/metabolismo , Polimorfismo Genético
4.
Front Microbiol ; 8: 1000, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620367

RESUMO

An unusual aspect of actinobacterial metabolism is the use of the redox cofactor F420. Studies have shown that actinobacterial F420H2-dependent reductases promiscuously hydrogenate diverse organic compounds in biodegradative and biosynthetic processes. These enzymes therefore represent promising candidates for next-generation industrial biocatalysts. In this work, we undertook the first broad survey of these enzymes as potential industrial biocatalysts by exploring the extent, as well as mechanistic and structural bases, of their substrate promiscuity. We expressed and purified 11 enzymes from seven subgroups of the flavin/deazaflavin oxidoreductase (FDOR) superfamily (A1, A2, A3, B1, B2, B3, B4) from the model soil actinobacterium Mycobacterium smegmatis. These enzymes reduced compounds from six chemical classes, including fundamental monocycles such as a cyclohexenone, a dihydropyran, and pyrones, as well as more complex quinone, coumarin, and arylmethane compounds. Substrate range and reduction rates varied between the enzymes, with the A1, A3, and B1 groups exhibiting greatest promiscuity. Molecular docking studies suggested that structurally diverse compounds are accommodated in the large substrate-binding pocket of the most promiscuous FDOR through hydrophobic interactions with conserved aromatic residues and the isoalloxazine headgroup of F420H2. Liquid chromatography-mass spectrometry (LC/MS) and gas chromatography-mass spectrometry (GC/MS) analysis of derivatized reaction products showed reduction occurred through a common mechanism involving hydride transfer from F420H- to the electron-deficient alkene groups of substrates. Reduction occurs when the hydride donor (C5 of F420H-) is proximal to the acceptor (electrophilic alkene of the substrate). These findings suggest that engineered actinobacterial F420H2-dependent reductases are promising novel biocatalysts for the facile transformation of a wide range of α,ß-unsaturated compounds.

5.
Appl Environ Microbiol ; 82(23): 6810-6818, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27637879

RESUMO

A defining feature of mycobacterial redox metabolism is the use of an unusual deazaflavin cofactor, F420 This cofactor enhances the persistence of environmental and pathogenic mycobacteria, including after antimicrobial treatment, although the molecular basis for this remains to be understood. In this work, we explored our hypothesis that F420 enhances persistence by serving as a cofactor in antimicrobial-detoxifying enzymes. To test this, we performed a series of phenotypic, biochemical, and analytical chemistry studies in relation to the model soil bacterium Mycobacterium smegmatis Mutant strains unable to synthesize or reduce F420 were found to be more susceptible to a wide range of antibiotic and xenobiotic compounds. Compounds from three classes of antimicrobial compounds traditionally resisted by mycobacteria inhibited the growth of F420 mutant strains at subnanomolar concentrations, namely, furanocoumarins (e.g., methoxsalen), arylmethanes (e.g., malachite green), and quinone analogues (e.g., menadione). We demonstrated that promiscuous F420H2-dependent reductases directly reduce these compounds by a mechanism consistent with hydride transfer. Moreover, M. smegmatis strains unable to make F420H2 lost the capacity to reduce and detoxify representatives of the furanocoumarin and arylmethane compound classes in whole-cell assays. In contrast, mutant strains were only slightly more susceptible to clinical antimycobacterials, and this appeared to be due to indirect effects of F420 loss of function (e.g., redox imbalance) rather than loss of a detoxification system. Together, these data show that F420 enhances antimicrobial resistance in mycobacteria and suggest that one function of the F420H2-dependent reductases is to broaden the range of natural products that mycobacteria and possibly other environmental actinobacteria can reductively detoxify.IMPORTANCE This study reveals that a unique microbial cofactor, F420, is critical for antimicrobial resistance in the environmental actinobacterium Mycobacterium smegmatis We show that a superfamily of redox enzymes, the F420H2-dependent reductases, can reduce diverse antimicrobials in vitro and in vivoM. smegmatis strains unable to make or reduce F420 become sensitive to inhibition by these antimicrobial compounds. This suggests that mycobacteria have harnessed the unique properties of F420 to reduce structurally diverse antimicrobials as part of the antibiotic arms race. The F420H2-dependent reductases that facilitate this process represent a new class of antimicrobial-detoxifying enzymes with potential applications in bioremediation and biocatalysis.

6.
Protein Sci ; 25(9): 1692-709, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27364382

RESUMO

Bilirubin is a potent antioxidant that is produced from the reduction of the heme degradation product biliverdin. In mammalian cells and Cyanobacteria, NADH/NADPH-dependent biliverdin reductases (BVRs) of the Rossmann-fold have been shown to catalyze this reaction. Here, we describe the characterization of Rv2074 from Mycobacterium tuberculosis, which belongs to a structurally and mechanistically distinct family of F420 H2 -dependent BVRs (F-BVRs) that are exclusively found in Actinobacteria. We have solved the crystal structure of Rv2074 bound to its cofactor, F420 , and used this alongside molecular dynamics simulations, site-directed mutagenesis and NMR spectroscopy to elucidate its catalytic mechanism. The production of bilirubin by Rv2074 could exploit the anti-oxidative properties of bilirubin and contribute to the range of immuno-evasive mechanisms that have evolved in M. tuberculosis to allow persistent infection.


Assuntos
Proteínas de Bactérias/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biliverdina/química , Biliverdina/metabolismo , Cristalografia por Raios X , Mycobacterium tuberculosis/genética , Oxirredução , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Tuberculose/enzimologia , Tuberculose/genética
7.
Microbiol Mol Biol Rev ; 80(2): 451-93, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27122598

RESUMO

5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis.


Assuntos
Flavinas/fisiologia , Riboflavina/análogos & derivados , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Archaea/metabolismo , Euryarchaeota/metabolismo , Humanos , Redes e Vias Metabólicas , Mycobacterium/metabolismo , Infecções por Mycobacterium/tratamento farmacológico , Oxirredução , Riboflavina/fisiologia
8.
J Mol Biol ; 427(22): 3554-3571, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26434506

RESUMO

The deazaflavin cofactor F420 enhances the persistence of mycobacteria during hypoxia, oxidative stress, and antibiotic treatment. However, the identities and functions of the mycobacterial enzymes that utilize F420 under these conditions have yet to be resolved. In this work, we used sequence similarity networks to analyze the distribution of the largest F420-dependent protein family in mycobacteria. We show that these enzymes are part of a larger split ß-barrel enzyme superfamily (flavin/deazaflavin oxidoreductases, FDORs) that include previously characterized pyridoxamine/pyridoxine-5'-phosphate oxidases and heme oxygenases. We show that these proteins variously utilize F420, flavin mononucleotide, flavin adenine dinucleotide, and heme cofactors. Functional annotation using phylogenetic, structural, and spectroscopic methods revealed their involvement in heme degradation, biliverdin reduction, fatty acid modification, and quinone reduction. Four novel crystal structures show that plasticity in substrate binding pockets and modifications to cofactor binding motifs enabled FDORs to carry out a variety of functions. This systematic classification and analysis provides a framework for further functional analysis of the roles of FDORs in mycobacterial pathogenesis and persistence.


Assuntos
Proteínas de Bactérias/química , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Heme/metabolismo , Mycobacterium/enzimologia , Oxirredutases/química , Oxirredutases/classificação , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Oxirredutases/metabolismo , Filogenia , Ligação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...